domingo, 30 de septiembre de 2012

Elon Musk, the 21st Century Industrialist

ORIGINAL: BusinessWeek
September 13, 2012

On Fridays, Elon Musk gathers his engineers in an old hangar in Los Angeles. The building, next to a municipal airport a couple miles south of the Hollywood Park race track and casino, is now a research and development facility for Musk’s electric car company, Tesla Motors (TSLA). Musk uses these meetings to check the team’s progress and give straightforward, often withering, design critiques. During one such session in July, versions of the Model S sedan and the skeletal frame of a forthcoming sport-utility vehicle, the Model X, sit in a corner. Drivetrain prototypes lay on the concrete floor next to interior cabin mock-ups.

Musk’s staff huddles around him as he zeroes in on a sun visor. He hates it. He examines the seam and, noticing how it pushes up the fabric, declares it “fish-lipped.” The screws on the hinges feel like knives stabbing him in the eye. He announces he wants to find the best sun visor in the world, and then make a better one.

llustration by R. Kikuo Johnson
The session continues in the parking lot, where a number of competitors’ vehicles—some hybrids, some conventional—await judgment. Musk squeezes his six-foot-two, broad-shouldered frame into the back seat of a luxury sedan from Hyundai and then into an Acura SUV. He scoffs at the cramped third-row seats in the Acura. “That’s like a midget cave,” he says, and the group chuckles on cue. “It’s good to get a sense for just how bad the other cars are.

Last year alone, Acura’s parent company, Honda Motor (HMC), sold 200,000 hybrids. Toyota Motor (TM) sold 629,000. In nine years, Tesla has built a total of 2,450 vehicles. The auto industry may have had a rough time of late, but Tesla has had buckets of delays, quality issues, and near-death financial crises. That Musk feels no shame dismissing the efforts of vastly larger competitors would not surprise his friends and colleagues, who describe him as Steve Jobs, John D. Rockefeller, and Howard Hughes rolled into one. “He’s a throwback to when people were doing less incrementalist things,” says Peter Thiel, the tech investor who co-founded PayPal with Musk. “The companies he’s started are executing against a vision measured not in years but in decades.Bruce Leak, a veteran Silicon Valley entrepreneur who once worked with Musk at a video game company, says, “He has that Bill Gates energy where his foot bounces and he’s wiggling just because he’s so smart.Jon Favreau, a friend and the director of the Iron Man movies, has called Musk the basis for his version of comic book hero Tony Stark, the playboy inventor who builds a flying weaponized suit.

Musk has been having a year good enough for another movie. In May, his Space Exploration Technologies, better known as SpaceX, successfully launched a 227-foot-tall rocket from a platform in Cape Canaveral, docking one of its Dragon capsules with the International Space Station, orbiting 220 miles above the earth—a feat NASA called “absolutely incredible. Tesla, which went public in 2010, started shipping the all-electric Model S luxury sedan in June and will soon unveil a nationwide network of charging stations. SolarCity, where Musk is chairman of the board, is a player in the residential and commercial solar markets, with more than 28,000 customers, and is expected to go public imminently at a value of about $1.5 billion. Musk is chief executive officer of Tesla and SpaceX, and is the largest shareholder in all three companies. Following the SolarCity IPO, his net worth could be well north of $3 billion.

La lluvia en el Amazonas disminuirá entre un 12 y un 21 por ciento para 2050

Día 05/09/2012 - 20.21h

Cada año se deforesta la superficie equivalente a Inglaterra pese a que la humedad de estos bosques es clave para la formación de nubes


La deforestación a gran escala del Amazonas provocará una disminución de las lluvias de un 12% en la estación húmeda y de un 21% en la seca para el año 2050, según un estudio británico que publica este miércoles la revista «Nature».

«Los bosques incrementan la cantidad de lluvia que origina el viento, y con nuestro trabajo averiguamos que la deforestación del Amazonas puede causar una gran reducción del volumen de lluvia en el sur de Brasil», ha explicado Dominick Spracklen, químico y autor principal del artículo.

Spracklen y su equipo de científicos de la Universidad de Leeds (norte de Inglaterra) estudiaron cómo la densidad de las selvas afecta al volumen de precipitaciones entre los trópicos, a partir de datos obtenidos por satélite.

La vegetación desprende humedad desde la tierra hacia la atmósfera en un proceso conocido como evapotranspiración, que influye en la cantidad de lluvia.

El grupo de Spracklen descubrió ahora que el viento que atraviesa áreas frondosas de la selva produce, días después, el doble de precipitaciones que el aire que circula entre una vegetación menos espesa.

Deforestación y reducción de la humedad
La selva amazónica y los bosques tropicales del Congo son los lugares en los que la vegetación tiene un mayor efecto sobre el régimen de lluvias, detalló Spracklen. Cuando los bosques son sustituidos por pastos o cultivos, la humedad del suelo disminuye, lo que reduce a su vez la humedad atmosférica y las precipitaciones.

Al combinar este hallazgo con el ritmo de deforestación actual del Amazonas, Spracklen predijo que las lluvias se reducirán en la cuenca amazónica un 12 % durante la estación húmeda y un 21 % en la seca para 2050.

La deforestación de algunas partes de la selva del Amazonas reducirá las lluvias tanto allí como en otras regiones aledañas, como la cuenca del Río de la Plata, en donde este investigador calcula que las lluvias disminuirán un 4 %.

Los expertos temen que estos cambios perjudiquen al sector agrícola, que genera 15.000 millones de dólares (12.000 millones de euros) anuales en la Amazonía, así como a la industria hidroeléctrica, que proporciona el 65 % de la electricidad de Brasil.

Cada año se deforestan 50.000 kilómetros cuadrados de selvas entre los trópicos, aproximadamente la misma superficie que Inglaterra

1,000,000,000,000 Frames/Second Photography - Ramesh Raskar


Photo: TED
Ramesh Raskar presents femto-photography, a new type of imaging so fast it visualizes the world one trillion frames per second, so detailed it shows light itself in motion. This technology may someday be used to build cameras that can look “around” corners or see inside the body without X-rays.

Photography is about creating images by recording light. At the MIT media lab, professor Ramesh Raskar and his team members have invented a camera that can photograph light itself as it moves at, well, the speed of light.

Photography is about creating images by recording light. At the MIT media lab, professor Ramesh Raskar and his team members have invented a camera that can photograph light itself as it moves at, well, the speed of light.

Why you should listen to him:

In 1964 MIT professor Harold Edgerton, pioneer of stop-action photography, famously took a photo of a bullet piercing an apple using exposures as short as a few nanoseconds. Inspired by his work, Ramesh Raskar and his team set out to create a camera that could capture not just a bullet (traveling at 850 meters per second) but light itself (nearly 300 million meters per second).

Stop a moment to take that in: photographing light as it moves. For that, they built a camera and software that can visualize pictures as if they are recorded at 1 trillion frames per second. The same photon-imaging technology can also be used to create a camera that can peer "around" corners , by exploiting specific properties of the photons when they bounce off surfaces and objects.

Among the other projects that Raskar is leading, with the MIT Media Lab's Camera Culture research group, are low-cost eye care devices, a next generation CAT-Scan machine and human-computer interaction systems.

Andreas Velten, Thomas Willwacher, Otkrist Gupta, Ashok Veeraraghavan, Moungi G. Bawendi and Ramesh Raskar, “Recovering Three Dimensional Shape around a Corner using Ultra-Fast Time-of-Flight Imaging.Nature Communications, March 2012

Andreas Velten, Adrian Jarabo, Belen Masia, Di Wu, Christopher Barsi, Everett Lawson, Chinmaya Joshi, Diego Gutierrez, Moungi G. Bawendi and Ramesh Raskar, "Ultra-fast Imaging for Light in Motion" (in progress).

"Though photographs in the near future will still be composed by people holding cameras, it will gradually become more accurate to say pictures were computed rather than 'taken' or 'captured.'"

Popular Photography magazine

From dinosaur fossil fuel to dinosaur inspired design renewable energy.

ORIGINAL: TreeHugger
September 17, 2012

Dinosaur-Inspired Designs Make Wind Turbines More Aerodynamic

In the grand scheme of things, we're still in the early stages of wind power generation, but even so, there are still many, many wind turbines already installed and generating power. When new technological advances come along like new turbine designs or tweaks to the blades or motors that can increase power generation, replacing entire wind turbines would be very costly. Because of that, Siemens has developed a set of wind turbine blade attachments that increase power generation without having to fully replace any part of the turbine.

The coolest part of these add-ons? They're inspired by dinosaurs.

The first of these attachments are called DinoTails. These resemble the back plates of a stegosaurus. When applied to a wind turbine blade, they increase the overall area of the blade to add lift. The serrated edges help break up air flow around the blades, which decreases turbulence and makes the the turbines quieter while reducing the strain on the blades.

The second attachments are DinoShells. These are shaped like a snow shovel (or the curve of a dinosaur egg) and extend the shape of the turbine blade all the way to the main shaft. Siemens says this extension makes the turbine more efficient.

The third attachment is a vortex generator -- no cutesy name -- that features small fins that force air to stay in contact with the top of the blade for longer. This increases lift, which in turn increases power generation.

Siemens says when these three attachments are added, a wind turbine's power output is increased by 1.5 percent. This may seem like a tiny number, but when you outfit an entire wind farm with these, 1.5 percent is actually nothing to laugh at. New Scientist reports, "the Altamont Pass Wind Farm in California - one of the world's biggest - produces 125 megawatts on average. A 1.5 per cent increase there would meet the energy needs of an extra 2500 households."

Siemens is installing the attachments at the Bison 2 and 3 Wind Energy Centers in North Dakota, which should boost capacity by 3.15 megawatt.

sábado, 29 de septiembre de 2012

Kale: The Anti-Cancer Vegetable

September 29, 2012

Photo credit:
What's the Latest Development?

Nutritionists increasingly recognize kale—a vegetable in the Brassica family along with broccoli, cauliflower and cabbage—as an important part of a healthy diet, especially one aimed at preventing cancer. "Brassica vegetables are known to help with general health as well as heart disease and cancer, but even among this group kale stands out," says Cheryl Harris of Harris Whole Health. Known for its tough texture and piquant taste, kale has the broadest range of antioxidants and also the highest levels of Vitamin K and a type of Vitamin E that seems to be heart-healthy.

What's the Big Idea?

While kale may be something of a wonder-food, any healthy diet will include a balance of different food groups. Deirdre Orceyre, a naturopathic physician at the Center for Integrative Medicine at George Washington University, says kale "can be hard on the digestive system"—meaning it can cause bloating, gas and other abdominal issues—"and also contains a compound that can suppress thyroid function in certain people." Orceyre recommends not eating the vegetable uncooked more than once or twice a week and buying organic when possible, due to surface chemicals caused by pesticides.

Did Slow Space Rocks Seed Life on Earth?

September 28, 2012

New model yields better odds for transfer of organisms among planetary systems.
Planets coalesce and rocky bodies collide in an artist's conception of a young planetary system. Illustration courtesy Lynette Cook, FUSE/NASA
If microorganisms could survive a journey through space inside meteoroids, could life from Earth be transferred to planets in other solar systems—or even vice versa? A new study suggests the possibility is much higher than scientists once thought.

Using computer simulations involving slow-moving rocks, scientists from Princeton University, the University of Arizona, and the Centro de Astrobiología (CAB) in Spain concluded that Earth could have exchanged rocks trillions of times with planets from other planetary systems during the solar system's infancy.

At the time—several billion years ago—the sun would have been in its native star cluster, with Earth and nearby planetary systems under heavy meteorite bombardment, said study co-author Amaya Moro-Martin, an astrophysicist at CAB.

The research, published in the journal Astrobiology, was presented this week at the European Planetary Science Congress in Madrid.

Scientists had previously considered the possibility that meteorites could escape from our solar system and land on a terrestrial planet in another system. But they had concluded that the chances were extremely slim because of the speeds of the objects involved.

"Everyone assumed the rocks would be ejected very fast—so fast they couldn't be captured by the next star. They were flying right by," said study leader Edward Belbruno, a Princeton mathematician.

Space Rocks Sneaking Up on Stars

Belbruno, Moro-Martin, and colleagues considered a new scenario: a low-velocity process called weak transfer.

When they factored in much slower speeds of around 100 meters (330 feet) per second, along with other considerations, the researchers found a strong case for lithopanspermia—the idea that biologic material can be spread through pieces of planetary rock hurled into space by collisions and other events. (Also see: "Life Ingredients Found in Superhot Meteorites—A First.")

"Our idea is that, instead of leaving Earth fast, you leave slowly and sort of sneak up on the next star," said Belbruno, who demonstrated the principles of weak transfer in 1991 with a Japanese probe trying to enter the moon's orbit.

In its youth, the solar system would have still been embedded in the sun's native stellar cluster, when the stars were close together and moving very slowly relative to each other. Before the cluster slowly dispersed, the research suggests, a window of opportunity had opened up for lithopanspermia to occur.

Did Life on Earth Come From Other Planets?

Rocks have already intermingled within our solar system: A number of meteorites found on Earth originate from Mars, others from the moon. This new model opens up the possibility of large rock quantities being exchanged between different planetary systems within a star cluster.

Under the weak-transfer scenario, as many as 12 out of 10,000 rocks cast off by our solar system and its closest neighbor in the sun's birth cluster could have been captured by the other. Earlier simulations put the odds at around one in a million.

The model also boosts the odds that life-bearing rocks could seed other worlds under certain conditions.

For one, microorganisms like bacterial spores would have to survive a journey fraught with hazards. "Things like UV radiation and cosmic rays would basically fry the poor guys," Moro-Martin said.

The bigger the rock, however, the better the chances that the life-forms could hide long enough to survive an interstellar journey, she noted. (Related: " Space Poison Helped Start Life on Earth?")

Although life on Earth is largely thought to have originated here, the notion that it could have spread to other worlds via weak transfer leaves open the intriguing, opposite scenario.

"It's possible the reverse process is true—that life on Earth was seeded from other places," Moro-Martin said. "The mechanism operates both ways. Given how many extrasolar planetary systems we know are out there and how diverse they are, this opens a new world of possibilities to dream about."

10 Tips on Writing from David Ogilvy

ORIGINAL: Brain Pickings

“Never write more than two pages on any subject.”

How is your new year’s resolution to read more and write better holding up? After tracing the fascinating story of the most influential writing style guide of all time and absorbing advice on writing from some of modern history’s most legendary writers, here comes some priceless and pricelessly uncompromising wisdom from a very different kind of cultural legend: iconic businessman and original “Mad Man” David Ogilvy. On September 7th, 1982, Ogilvy sent the following internal memo to all agency employees, titled “How to Write”:

The better you write, the higher you go in Ogilvy & Mather. People who think well, write well.

Woolly minded people write woolly memos, woolly letters and woolly speeches.

Good writing is not a natural gift. You have to learn to write well. Here are 10 hints:
  1. Read the Roman-Raphaelson book on writing. Read it three times.
  2. Write the way you talk. Naturally.
  3. Use short words, short sentences and short paragraphs.
  4. Never use jargon words like reconceptualize, demassification, attitudinally, judgmentally. They are hallmarks of a pretentious ass.
  5. Never write more than two pages on any subject.
  6. Check your quotations.
  7. Never send a letter or a memo on the day you write it. Read it aloud the next morning — and then edit it.
  8. If it is something important, get a colleague to improve it.
  9. Before you send your letter or your memo, make sure it is crystal clear what you want the recipient to do.
  10. If you want ACTION, don’t write. Go and tell the guy what you want.


This, and much more of Ogilvy’s timeless advice, can be found in The Unpublished David Ogilvy: A Selection of His Writings from the Files of His Partners, a fine addition to my favorite famous correspondence. The book is long out of print, but you can snag a copy with some rummaging through Amazon’s second-hand copies or your favorite used bookstore.

New Theory on Why Men Love Breasts

ORIGINAL: LiveScience

Why do straight men devote so much headspace to those big, bulbous bags of fat drooping from women's chests? Scientists have never satisfactorily explained men's curious breast fixation, but now, a neuroscientist has struck upon an explanation that he says "just makes a lot of sense."

Larry Young, a professor of psychiatry at Emory University who studies the neurological basis of complex social behaviors, thinks human evolution has harnessed an ancient neural circuit that originally evolved to strengthen the mother-infant bond during breast-feeding, and now uses this brain circuitry to strengthen the bond between couples as well. The result? Men, like babies, love breasts.

When a woman's nipples are stimulated during breast-feeding, the neurochemical oxytocin, otherwise known as the "love drug," floods her brain, helping to focus her attention and affection on her baby. But research over the past few years has shown that in humans, this circuitry isn't reserved for exclusive use by infants.

Recent studies have found that nipple stimulation enhances sexual arousal in the great majority of women, and it activates the same brain areas as vaginal and clitoral stimulation. When a sexual partner touches, massages or nibbles a woman's breasts, Young said, this triggers the release of oxytocin in the woman's brain, just like what happens when a baby nurses. But in this context, the oxytocin focuses the woman's attention on her sexual partner, strengthening her desire to bond with this person.

In other words, men can make themselves more desirable by stimulating a woman's breasts during foreplay and sex. Evolution has, in a sense, made men want to do this.

Attraction to breasts "is a brain organization effect that occurs in straight males when they go through puberty," Young told Life's Little Mysteries. "Evolution has selected for this brain organization in men that makes them attracted to the breasts in a sexual context, because the outcome is that it activates the female bonding circuit, making women feel more bonded with him. It's a behavior that males have evolved in order to stimulate the female's maternal bonding circuitry." [Why Do Men Have Nipples?]

So, why did this evolutionary change happen in humans, and not in other breast-feeding mammals? Young thinks it's because we form monogamous relationships, whereas 97 percent of mammals do not. "Secondly, it might have to do with the fact that we are upright and have face-to-face sex, which provides more opportunity for nipple stimulation during sex. In monogamous voles, for example, the nipples are hanging toward the ground and the voles mate from behind, so this didn't evolve," he said. "So, maybe the nature of our sexuality has allowed greater access to the breasts."

Young said competing theories of men's breast fixation don't stand up to scrutiny. For example, the argument that men tend to select full-breasted women because they think these women's breast fat will make them better at nourishing babies falls short when one considers that "sperm is cheap" compared with eggs, and men don't need to be choosy. 

But Young's new theory will face scrutiny of its own. Commenting on the theory, Rutgers University anthropologist Fran Mascia-Lees, who has written extensively about the evolutionary role of breasts, said one concern is that not all men are attracted to them. "Always important whenever evolutionary biologists suggest a universal reason for a behavior and emotion: how about the cultural differences?" Mascia-Lees wrote in an email. In some African cultures, for example, women don't cover their breasts, and men don't seem to find them so, shall we say, titillating.

Young says that just because breasts aren't covered in these cultures "doesn't mean that massaging them and stimulating them is not part of the foreplay in these cultures. As of yet, there are not very many studies that look at [breast stimulation during foreplay] in an anthropological context," he said.

Young elaborates on his theory of breast love, and other neurological aspects of human sexuality, in a new book, "The Chemistry Between Us" (Current Hardcover, 2012), co-authored by Brian Alexander.

Follow Natalie Wolchover on Twitter @nattyover or Life's Little Mysteries @llmysteries. We're also on Facebook & Google+.

Manifestación de Jardín, Antioquia, contra la minería


Subido por tudestinojardin el 08/01/2012
Gran marcha por la defensa de los recursos naturales de nuestro municipio.


Geneticists Create 'Bi-Fi'—The Biological Internet

September 29, 2012

What's the Latest Development?
By engineering a parasitical virus, geneticists have taken the first steps toward creating a biological internet in which the body's processes can be improved by controlling the natural communication abilities of cells. Using the M13 virus, Stanford researchers have created a mechanism to send genetic messages from cell to cell. "The system greatly increases the complexity and amount of data that can be communicated between cells and could lead to greater control of biological functions within cell communities."

What's the Big Idea?
When the Internet was invented in the 1970s, hardly anyone knew what it might become. Similarly, Bi-Fi could yield wild benefits: "Down the road, the biological Internet could lead to biosynthetic factories in which huge masses of microbes collaborate to make more complicated fuels, pharmaceuticals and other useful chemicals. With improvements, the engineers say, their cell-cell communication platform might someday allow more complex three-dimensional programming of cellular systems, including the regeneration of tissue or organs."
Photo credit:

viernes, 28 de septiembre de 2012

La expedición que descubre un millón de especies marinas


La nave científica Tara ha completado recientemente su viaje de 112.000 kilómetros alrededor del mundo, durante el que ha recogido datos sobre la diversidad del plancton.

El equipo internacional de científicos a bordo del Tara descubrió más de un millón de especies en su viaje y volvió con información detallada de distintos tipos de este organismo de los océanos.

Un camarógrafo marino tomó imágenes usando una cámara de alta definición con una lente macro, la primera vez que se utiliza esta tecnología para capturar instantáneas de estos organismos microscópicos.

El equipo del Tara, cuya misión era estudiar el impacto del cambio climático en ecosistemas marinos, señaló que el 90% de las especies que detectaron no se conocían previamente.

Vea este video de BBC Mundo sobre los secretos mejor guardados en las profundidades marinas.

Business Impact: El empresario que vende premios


Peter Diamandis dirige grandes y llamativos concursos tecnológicos. Afirma que crean innovación que no se daría de otra manera.

Peter Diamandis es un médico y emprendedor aeroespacial que conoce la psicología humana. Por eso inventó la Fundación X Prize, para conseguir crear, mediante concursos, lo que él denomina “avances radicales” en beneficio de la humanidad. El primer premio Ansari X Prize –un premio de 10 millones de dólares (unos 77 millones de euros) otorgado en 2004 al primer vuelo espacial tripulado privado- generó tanta publicidad que Diamandis afirma que solo la cobertura de prensa que recibió valía 120 millones de dólares (unos 92 millones de euros).

Un cheque inmenso: Peter Diamandis (extremo izquierdo) entrega un cheque de 5 millones de dólares a los ganadores del X Prize Progressive Insurance para vehículos eficientes en 2010. 
Fuente: Cortesía de la Fundación X PRIZE | foto de David Freers

Desde entonces Diamandis y su fundación han recaudado muchos más millones para poner en marcha concursos para encontrar mejores formas de limpiar vertidos de petróleo o producir coches que consigan hacer 43 kilómetros por litro de gasolina. También han establecido el mayor premio tecnológico de la historia: un premio de 30 millones de dólares (unos 23 millones de euros) para la primera organización privada capaz de colocar un robot en la luna. Diamandis habló con Technology Review sobre lo que quiere lograr.

Technology Review: ¿Qué sabe de la naturaleza humana que le condujo al negocio de los premios?

Diamandis: Genéticamente, los humanos están programados para competir. Lo hacemos para buscar pareja, en el deporte, en el trabajo. La competencia incentivada fuerza a la gente a adaptarse a una serie de limitaciones con un objetivo claro que los ayuda a resolver un problema. En vez de pensar creativamente, se trata de pensar concentradamente.

Porque si las personas se enfrentan a un problema sin restricciones, son vagas. Usan todos los recursos, tiempo y dinero que tienen disponibles. Van a lo seguro. A la gente no le gusta arriesgarse. Si limitas el problema, bien las condiciones de tiempo, bien el dinero, la mayoría dirán que no se puede hacer y se retirarán. Pero quienes dicen “Vale, voy a intentarlo” tienen que pensar muy bien cómo hacerlo. Eso los obliga a enfrentarse al problema de una forma completamente distinta. Esta situación normalmente sería muy arriesgada. Pero en un concurso, en el que si ganas, te llevas el gran bote, la gente está dispuesta a asumir riesgos mayores. Si se cuenta con una base amplia de concursantes, quienes lo logren habrán, por pura definición, hecho algo nuevo.

Technology Review: Si los X Prizes fueran la única forma de financiar la tecnología, ¿qué clase de tecnología acabaríamos teniendo?

Diamandis: Mi respuesta es que se trata de crear un mundo de abundancia. Se trata de crear un avance que permitirá no una vida de lujo, sino una vida posible para siete mil millones de personas, que tengan sus necesidades básicas cubiertas en términos de agua, comida, energía y sanidad. Se trata de resolver los grandes retos del mundo. Hay problemas que tienen mil millones de personas que se podrían resolver en un periodo de 10 años si hubiera gente centrada en conseguirlo.

Technology Review: La cantidad de dinero necesaria para competir en un X Prize es bastante importante. ¿Este concurso es solo para los más ricos?

Diamandis: Todos los equipos usan el premio, el escaparate del premio, su fama , para incentivar las inversiones. Antes de que existiera el Ansari X Prize, una conversación que se repetía era: “¿Financiaría mi cohete espacial?”. Y la mayor parte de la gente decía “¿Estás loco? Eso solo lo hace la NASA”. No había ningún tipo de validación externa. En nuestro concurso para buscar sistemas de limpiar vertidos petrolíferos, siete de los diez equipos clasificados eran equipos muy pequeños. Eran empresas familiares. Uno de ellos se había conocido en un estudio de tatuaje de Las Vegas, pero aún así duplicaron lo que los gigantes de la industria llevaban haciendo 20 años.

Technology Review: Dado lo rápido que se mueve la tecnología por sí misma, ¿por qué hacen falta premios siquiera?

Diamandis: Buena pregunta. Un motivo es acelerar el movimiento en determinado sentido. Y el segundo, usando el término acuñado por Clay Shirky, es que hay muchísima “plusvalía cognitiva” en el mundo. ¿Cómo se aprovecha eso para hacer algo constructivo y positivo? Tenemos el premio Qualcomm tricorder para una nueva generación de tricorders médicos [son los aparatos como los de Star Trek, capaces de analizar la salud de una persona sin tocar su cuerpo]. Los aparatos podrán estar disponibles dentro de cinco o diez años, pero los concursos sirven para establecer estándares de regulación, ayudan a atraer capital, ayudan a los emprendedores a centrarse en objetivos específicos. Hay millones de personas que se mueren en la actualidad que no se morirían si existiese este tipo de tecnología.

Technology Review: Qualcomm donó 20 millones de dólares (unos 15,4 millones de euros) a su fundación, pero solo la mitad es para los ganadores del concurso. La otra mitad va a la fundación. ¿No son unos gastos excesivos? 

Diamandis: Me frustra que la gente haga ese tipo de comparaciones. La gente que dice “¿Por qué unos gastos tan elevados?” no entienden lo que implica diseñar y lanzar un concurso, las relaciones públicas, las relaciones institucionales, el jurado, crear instalaciones para llevar a cabo el concurso y la validación de los resultados. Con Qualcomm haremos todo un ensayo clínico al final. Compararlo con una fundación que da becas y dice “Aquí tienes tu dinero, mándanos un informe anual”, es una tontería.

Why the Next UT-A&M Rivalry Could Be Fought in the Lab

SEPTEMBER 14, 2012 | 1:54 PM


UT Research Engineer Robert Pearsal looks into a vat of algae.

Two teams, racing against the clock. A long-standing rivalry that up til now has been played on the football field. And at the end, the prize: gooey, stinky algae.

While the University of Texas and Texas A&M University football teams no longer play each other after A&M left the Big 12 conference for the SEC (beginning their membership with a loss to Florida last Saturday), there is a new rivalry between the two campuses: who can make algae into a commercially-viable fuel fastest.

The specifics are well over our pay grade, involving words like microfluidic and B. Braunii. But suffice to say that the idea behind all this research is to create a fuel from algae that can be used in combustion engines.

At UT, as we reported in a story in December, the Open Algae team is hard at work trying to commercialize algae biofuels.

And at A&M they’re aiming to do the same.

A new report by Texas A&M Agrilife Today says that a team at the university may be within four years of a commercially-viable, fuel-grade algae oil.

The team, with a combined expertise from agriculture to engineering, has received a $2 million National Science Foundation grant to help hasten the process,” Agrilife Today writes.


A team at A&M recently received a $2 million grant to find ways to make algae biofuels commercially viable.

One of the collaborators on the project is Dr. Tim Devarenne, a Texas A&M AgriLife Research biochemist and collaborator on the project. He says that one benefit of algae isn’t just that it’s renewable, but also that it’s much less carbon intensive.If we harvest algae and process them into fuels, we don’t emit any excess carbon into the atmosphere that is currently being emitted from petroleum fossil fuels,” he tells Agrilife Today.

If all goes well, the A&M team could partner with industry to make algae fuel commercially viable.

If we can produce an alga that produces high amounts of oil and grows fast,” Devarenne says, “an industry partner could grow large amounts of it, extract the oil, convert that oil into gasoline or diesel fuel and sell it just like at a normal gasoline pump.




Algae can be grown using municipal wastewater, Devarenne says, or by using emissions from coal power plants. That means that carbon dioxide used to make algae fuel would come from existing carbon dioxide already in the atmosphere. The UT team has already produced biofuels from a sewage treatment plant outside of Austin.

And a recent study by UT found that it’s possible algae could produce 500 times more energy than it takes to grow. Oil and gas, by comparison, create 30 to 40 times as much energy as it takes to produce (i.e. drill) them, making algae potentially much more efficient to produce.

Algae take CO2 out of the atmosphere to make the oil and then when we burn the oil as fuel, we just put that CO2 back into the atmosphere,” Devarenne tells Agrilife Today. “That is different from petroleum because the CO2 from petroleum has been stored underground for hundreds of millions of years and then we release that into the atmosphere when we burn fuels created from petroleum.

Researchers Create Living ‘Neon Signs’ Composed of Millions of Glowing Bacteria

December 18, 2011
By Kim McDonald

Thousands of fluorescent E. coli bacteria

 make up a biopixel. Hasty Lab, UC San Diego
In an example of life imitating art, biologists and bioengineers at UC San Diego have created a living neon sign composed of millions of bacterial cells that periodically fluoresce in unison like blinking light bulbs.

Their achievement, detailed in this week’s advance online issue of the journal Nature, involved attaching a fluorescent protein to the biological clocks of the bacteria, synchronizing the clocks of the thousands of bacteria within a colony, then synchronizing thousands of the blinking bacterial colonies to glow on and off in unison.

A little bit of art with a lot more bioengineering, the flashing bacterial signs are not only a visual display of how researchers in the new field of synthetic biology can engineer living cells like machines, but will likely lead to some real-life applications.

Using the same method to create the flashing signs, the researchers engineered a simple bacterial sensor capable of detecting low levels of arsenic. In this biological sensor, decreases in the frequency of the oscillations of the cells’ blinking pattern indicate the presence and amount of the arsenic poison.

Because bacteria are sensitive to many kinds of environmental pollutants and organisms, the scientists believe this approach could be also used to design low cost bacterial biosensors capable of detecting an array of heavy metal pollutants and disease-causing organisms. And because the senor is composed of living organisms, it can respond to changes in the presence or amount of the toxins over time unlike many chemical sensors.

Tiny microfluidic chips allow the researchers to
 synchronize the bacteria to fluoresce 
or blink in unison
These kinds of living sensors are intriguing as they can serve to continuously monitor a given sample over long periods of time, whereas most detection kits are used for a one-time measurement,” said Jeff Hasty, a professor of biology and bioengineering at UC San Diego who headed the research team in the university’s Division of Biological Sciences and BioCircuits Institute. “Because the bacteria respond in different ways to different concentrations by varying the frequency of their blinking pattern, they can provide a continual update on how dangerous a toxin or pathogen is at any one time.

This development illustrates how basic, quantitative knowledge of cellular circuitry can be applied to the new discipline of synthetic biology,” said James Anderson, who oversees synthetic biology grants at the National Institutes of Health’s National Institute of General Medical Sciences, which partially funded the research. “By laying the foundation for the development of new devices for detecting harmful substances or pathogens, Dr. Hasty’s new sensor points the way toward translation of synthetic biology research into technology for improving human health.

The smaller chips contain about
500 blinking bacterial colonies or biopixels
The development of the techniques to make the sensor and the flashing display built on the work of scientists in the Division of Biological Sciences and School of Engineering, which they published in two previous Nature papers over the past four years. In the first paper, the scientists demonstrated how they had developed a way to construct a robust and tunable biological clock to produce flashing, glowing bacteria. In the second paper, published in 2010, the researchers showed how they designed and constructed a network, based on a communication mechanism employed by bacteria, that enabled them to synchronize all of the biological clocks within a bacterial colony so that thousands of bacteria would blink on and off in unison.

Many bacteria species are known to communicate by a mechanism known as quorum sensing, that is, relaying between them small molecules to trigger and coordinate various behaviors,” said Hasty, explaining how the synchronization works within a bacterial colony. “Other bacteria are known to disrupt this communication mechanism by degrading these relay molecules.

But the researchers found the same method couldn’t be used to instantaneously synchronize millions of bacteria from thousands of colonies.

EL AGUA es escogido como el eje temático central de la Semana Nacional de la Ciencia, la Tecnología y la Innovación 2012

ORIGINAL: SemanaCTeI2012 (Antioquia)

Tema central
El agua es fundamental en los seres vivos, Colombia es un país de agua, y cada ciudadano está íntimamenteligado a ella, por esta razón y respondiendo a los desafíos que plantea la ola invernal, la contaminación defuentes hídricas, la democratización del consumo, la gestión comunitaria frente a su administración, laregulación en su uso, entre otros, EL AGUA es escogido como el eje temático central de la Semana Nacional de la Ciencia, la Tecnología y la Innovación 2012.

La Semana se concibe como un proceso de largo aliento y no sólo actividades puntuales, por ello se realizarán durante tres meses consecutivos actividades previas, 12 como mínimo como antesala a la semana central de celebración entre el 1 y 7 de octubre.

II Seminario Internacional de Huella Hídrica

Los próximos 29 y 30 de octubre de 2012 se realizará el II Seminario Internacional de Huella Hídrica en Plaza Mayor (Medellín).

En este evento usted se presentará el proceso que se ha seguido con las redes de trabajo formadas en el primer Seminario y se analizará el tema de la Huella Hídrica desde diferentes ámbitos y enfoques.

El II Seminario Internacional de Huella Hídrica se configura como un espacio de intercambio de conocimiento en torno al avance científico de la Huella Hídrica, de forma que se pueda llegar de forma natural a la discusión y planteamiento de la aplicación de resultados a nivel político, empresarial y social.

El Seminario está dirigido a:
  • Directores y encargados del área ambiental en el sector público y privado.
  • Consultores en temas ambientales y sostenibilidad.
  • Funcionarios de Corporaciones Autónomas Regionales, Secretarías del Medio ambiente, Ministerios y encargados de evaluación de proyectos.
  • Directores de entidades ambientales no gubernamentales.
  • Ingenieros civiles, sanitarios, químicos y ambientales.
  • Profesionales de pregrado y postgrado interesados en el tema ambiental.
  • Estudiantes de últimos semestres de programas técnicos, tecnológicos.
  • Certificar su participación en este seminario internacional donde se analizará y debatirá uno de los temas ambientales con mayor relevancia en la actualidad.
  • Conocer el impacto y aplicación en cuenca del concepto de huella hídrica desde diferentes puntos de vista: sector público, sector privado y población en general.
  • Apropiarse de la metodología general y aplicaciones del concepto, análisis y orientación de los resultados.
  • Érika Zárate - Good Stuff International (Suiza)
  • Nicolas Franke - Water FootPrint Network (Holanda)
  • Mia Lafontaine - Quantis (Canadá)
  • (Ponente por confirmar) - Observatorio del Agua Fundación Botín (España)
  • (Ponente por confirmar) - WWF International (Suiza)
  • Diana Rojas - Agencia Suiza para el Desarrollo y la Cooperación - COSUDE (Colombia)
  • Javier Sabogal - WWF (Colombia)
  • Omar Vargas - IDEAM (Colombia)
  • Diego Arévalo - Centro de Ciencia y Tecnología de Antioquia - CTA (Colombia)
  • Carlos Toro - Centro Nacional de Producción Más Limpia - CNPML (Colombia)

Copyright © 2012 Semana Nacional de Ciencia, Tecnología e Innovación - Antioquia. Todos los derechos reservados.