CreditOlimpia Zagnoli
Gray Matter
ACADEMIC science has a gender problem: specifically, the almost daily reports about hostile workplaces, low pay, delayed promotion and even physical aggression against women. Particularly in math-intensive fields like the physical sciences, computer science and engineering, women make up only 25 to 30 percent of junior faculty, and 7 to 15 percent of senior faculty, leading many to claim that the inhospitable work environment is to blame.
Our country desperately needs more talented people in these fields; recruiting more women could address this issue. But the unwelcoming image of the sexist academy isn’t helping. Fortunately, as we have found in a thorough analysis of recent data on women in the academic workplace, it isn’t accurate, either.
There’s no argument that, until recently, universities deserved their reputations as bastions of male privilege and outright sexism. But times have changed. Many of the common, negative depictions of the plight of academic women are based on experiences of older women and data from before the 2000s, and often before the 1990s. That’s not to say that mistreatment doesn’t still occur — but when it does, it is largely anecdotal, or else overgeneralized from small studies. As we found, when the evidence of mistreatment goes beyond the anecdotal, it is limited to a small number of comparisons of men and women involving a single academic rank in a given field on a specific outcome.
In contrast, our work, which is forthcoming in the journal Psychological Science in the Public Interest and was written with the economists Donna K. Ginther, of the University of Kansas, and Shulamit Kahn, of Boston University, reports the results of several hundred analyses of data on hiring, salary, promotion, productivity and job satisfaction for eight broad fields of science at American universities and colleges.
Our analysis reveals that the experiences of young and midcareer women in math-intensive fields are, for the most part, similar to those of their male counterparts:
- They are more likely to receive hiring offers,
- are paid roughly the same (in 14 of 16 comparisons across the eight fields),
- are generally tenured and promoted at the same rate (except in economics),
- remain in their fields at roughly the same rate,
- have their grants funded and articles accepted as often and are about as satisfied with their jobs.
- Articles published by women are cited as often as those by men.
Moreover, in contrast to frequent claims that outright bias pushes more women out of math-intensive fields, we actually found a greater exodus of women from non-math-intensive fields in which they are already well represented as professors (like psychology and biology, where 45 to 65 percent of new professors are women) than from fields in which they are underrepresented (like engineering, computer science and physics, where only 25 to 30 percent of new professors are women). Our analyses show that women can and do prosper in math-based fields of science, if they choose to enter these fields in the first place.
So if alleged hiring and promotion biases don’t explain the underrepresentation of women in math-intensive fields, what does? According to our research, the biggest culprits are rooted in women’s earlier educational choices, and in women’s occupational and lifestyle preferences.
As children, girls tend to show more interest in living things (such as people and animals), while boys tend to prefer playing with machines and building things. As adolescents, girls express less interest in careers like engineering and computer science. Despite earning higher grades throughout schooling in all subjects — including math and science — girls are less likely to take math-intensive advanced-placement courses like calculus and physics.
Women are also less likely to declare college majors in math-intensive science fields. However, if they do take introductory science courses early in their college education, they are actually more likely than men to switch into majors in math-intensive fields of science — especially if their instructors are women. This shows that women’s interest in math-based fields can be cultivated, but that majoring in these fields requires exposure to enough math and science early on.
In contrast to math-based fields, women prefer veterinary medicine, where they now constitute 80 percent of graduates, and life sciences, in which they earn over half of all doctoral degrees; women are also half of all newly minted M.D.s and 70 percent of psychology Ph.D.s. However, those college women who do choose math-intensive majors like engineering persist in them through graduate school and into the academy at the same rate as their male counterparts — again showing that women can and do succeed in math-based fields if they develop interest in them and commit to them.
Today’s story about women in math-based academic fields is clear. While no career is without setbacks and challenges, life in fields like engineering, physics, mathematics and computer science — when viewed by the numbers across the population of academics today rather than through the lens of testimonials and overgeneralized findings — is life with reasonable pay, flexibility to meet family demands, and the chance to make meaningful impacts on the state of knowledge and the next generation of talented young people. Academic science is a rewarding career for many, men and women alike. We are not your father’s academy anymore.
ORIGINAL: NYTimes
By WENDY M. WILLIAMS andSTEPHEN J. CECI
OCT. 31, 2014
No hay comentarios:
Publicar un comentario
Nota: solo los miembros de este blog pueden publicar comentarios.