domingo, 22 de noviembre de 2015

How swarm intelligence could save us from the dangers of AI

Image Credit: diez artwork/Shutterstock
We’ve heard a lot of talk recently about the dangers of artificial intelligence. From Stephen Hawking and Bill Gates, to Elon Musk, and Steve Wozniak, luminaries around the globe have been sounding the alarm, warning that we could lose control over this powerful technology — after all, AI is about creating systems that have minds of their own. A true AI could one day adopt goals and aspirations that harm us.

But what if we could enjoy the benefits of AI while ensuring that human values and sensibilities remain an integral part of the system?

This is where something called Artificial Swarm Intelligence comes in – a method for building intelligent systems that keeps humans in the loop, merging the power of computational algorithms with the wisdom, creativity, and intuition of real people. A number of companies around the world are already exploring swarms.

  • There’s Enswarm, a UK startup that is using swarm technologies to assist with recruitment and employment decisions
  • There’s, a startup using swarming and crypto-currencies like Bitcoin as a new model for fundraising
  • And the human swarming company I founded, Unanimous A.I., creates a unified intellect from any group of networked users.
This swarm intelligence technology may sound like science fiction, but it has its roots in nature.

It all goes back to the birds and the bees – fish and ants too. Across countless species, social groups have developed methods of amplifying their intelligence by working together in closed-loop systems. Known commonly as flocks, schools, colonies, and swarms, these natural systems enable groups to combine their insights and thereby outperform individual members when solving problems and making decisions. Scientists call this “Swarm Intelligence” and it supports the old adage that many minds are better than one.

But what about us humans?
Clearly, we lack the natural ability to form closed-loop swarms, but like many other skills we can’t do naturally, emerging technologies are filling a void. Leveraging our vast networking infrastructure, new software techniques are allowing online groups to form artificial swarms that can work in synchrony to answer questions, reach decisions, and make predictions, all while exhibiting the same types of intelligence amplifications as seen in nature. The approach is sometimes called “blended intelligence” because it combines the hardware and software technologies used by AI systems with populations of real people, creating human-machine systems that have the potential of outsmarting both humans and pure-software AIs alike.

It should be noted that swarming” is different from traditional “crowdsourcing,” which generally uses votes, polls, or surveys to aggregate opinions. While such methods are valuable for characterizing populations, they don’t employ the real-time feedback loops used by artificial swarms to enable a unique intelligent system to emerge. It’s the difference between measuring what the average member of a group thinks versus allowing that group to think together and draw conclusions based upon their combined knowledge and intuition.

Outside of the companies I mentioned above, where else can such collective technologies be applied? One area that’s currently being explored is medical diagnosis, a process that requires deep factual knowledge along with the experiential wisdom of the practitioner. Can we merge the knowledge and wisdom of many doctors into a single emergent diagnosis that outperforms the diagnosis of a single practitioner? The answer appears to be yes. In a recent study conducted by Humboldt-University of Berlin and RAND Corporation, a computational collective of radiologists outperformed single practitioners when viewing mammograms, reducing false positives and false negatives. In a separate study conducted by John Carroll University and the Cleveland Clinic, a collective of 12 radiologists diagnosed skeletal abnormalities. As a computational collective, the radiologists produced a significantly higher rate of correct diagnosis than any single practitioner in the group. Of course, the potential of artificially merging many minds into a single unified intelligence extends beyond medical diagnosis to any field where we aim to exceed natural human abilities when making decisions, generating predictions, and solving problems.

Now, back to the original question of why Artificial Swarm Intelligence is a safer form of AI.
Although heavily reliant on hardware and software, swarming keeps human sensibilities and moralities as an integral part of the processes. As a result, this “human-in-the-loop” approach to AI combines the benefits of computational infrastructure and software efficiencies with the unique values that each person brings to the table:
  • creativity, 
  • empathy, 
  • morality, and 
  • justice. 
And because swarm-based intelligence is rooted in human input, the resulting intelligence is far more likely to be aligned with humanity – not just with our values and morals, but also with our goals and objectives.

How smart can an Artificial Swarm Intelligence get?
That’s still an open question, but with the potential to engage millions, even billions of people around the globe, each brimming with unique ideas and insights, swarm intelligence may be society’s best hope for staying one step ahead of the pure machine intelligences that emerge from busy AI labs around the world.

Louis Rosenberg is CEO of swarm intelligence company Unanimous A.I. He did his doctoral work at Stanford University in robotics, virtual reality, and human-computer interaction. He previously developed the first immersive augmented reality system as a researcher for the U.S. Air Force in the early 1990s and founded the VR company Immersion Corp and the 3D digitizer company Microscribe.

ORIGINAL: VentureBeat
NOVEMBER 22, 2015

No hay comentarios:

Publicar un comentario